Pemanfaatan Artificial Intelligence dalam Hukum Acara Pidana: Tinjauan Yuridis dan Dampak Sosial
DOI:
https://doi.org/10.51903/perkara.v2i4.2235Keywords:
Artificial Intelligence, Criminal Procedure, Law Legal Technology, Judicial Efficiency, Algorithmic BiasAbstract
The integration of Artificial Intelligence (AI) into criminal procedure law has emerged as a significant development in enhancing the efficiency and accuracy of judicial systems. However, the implementation of AI in Indonesia remains at an early stage, with challenges such as regulatory gaps, societal trust issues, and potential algorithmic biases. This study aims to explore the potential and challenges of utilizing AI within Indonesia’s criminal procedure framework, focusing on its legal and social implications. Employing a qualitative research approach, this study combines in-depth interviews with legal experts, practitioners, and AI developers, alongside a comprehensive literature review of existing laws and academic research. The findings reveal that AI has the potential to expedite case management, enhance evidence analysis, and reduce human biases in judicial decision-making. Nevertheless, the lack of specific regulations governing AI’s use in the judiciary and the limited public trust pose significant hurdles to its effective implementation. The study also highlights the importance of adaptive legal frameworks and public education to foster transparency and accountability in AI applications. These results contribute to the broader discourse on AI integration in legal systems, particularly in developing countries, by emphasizing the need for localized strategies that address unique social and legal contexts. The implications of this research extend to policymakers and technology developers, providing insights into the regulatory and ethical considerations required for sustainable AI adoption in judicial processes. Future research is recommended to expand the scope of empirical studies and include quantitative analyses to further substantiate the findings.
References
Akpobome, O. (2024). The Impact of Emerging Technologies on Legal Frameworks: A Model for Adaptive Regulation. International Journal of Research Publication and Reviews, 5(10), 5046–5060. https://doi.org/10.55248/gengpi.5.1024.3012
Amelia, N. F., Marcella, D. M., Semesta, H. J., Budiarti, S., & Usman, S. F. (2024). Implementasi Artificial Intelligence (AI) Dalam Pembentukan Peraturan Perundang-Undangan Di Indonesia. Eksekusi : Jurnal Ilmu Hukum Dan Administrasi Negara, 2(1), 56–70. https://doi.org/10.55606/EKSEKUSI.V2I1.789
Babajide Tolulope Familoni. (2024). Cybersecurity Challenges In The Age Of Ai: Theoretical Approaches And Practical Solutions. Computer Science & IT Research Journal, 5(3), 703–724. https://doi.org/10.51594/csitrj.v5i3.930
Bagaric, M., Svilar, J., Bull, M., Hunter, D., & Stobbs, N. (2022). The Solution to the Pervasive Bias and Discrimination in the Criminal Justice System: Transparent and Fair Artificial Intelligence. American Criminal Law Review, 59. https://heinonline.org/HOL/Page?handle=hein.journals/amcrimlr59&id=100&div=&collection=
Ben-Michael, E., Greiner, D. J., Huang, M., Imai, K., Jiang, Z., & Shin, S. (2024). Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies. https://arxiv.org/abs/2403.12108v3
Blauth, T. F., Gstrein, O. J., & Zwitter, A. (2022). Artificial Intelligence Crime: An Overview of Malicious Use and Abuse of AI. IEEE Access, 10, 77110–77122. https://doi.org/10.1109/ACCESS.2022.3191790
Busuioc, M. (2021). Accountable Artificial Intelligence: Holding Algorithms to Account. Public Administration Review, 81(5), 825–836. https://doi.org/10.1111/puar.13293
Chiao, V. (2019). Fairness, accountability and transparency: notes on algorithmic decision-making in criminal justice. International Journal of Law in Context, 15(2), 126–139. https://doi.org/10.1017/S1744552319000077
Dhirani, L. L., Mukhtiar, N., Chowdhry, B. S., & Newe, T. (2023). Ethical Dilemmas and Privacy Issues in Emerging Technologies: A Review. Sensors, 23(3), 1151. https://doi.org/10.3390/s23031151
Doshi-Velez, F., Kortz, M., Budish, R., Bavitz, C., Gershman, S., O’Brien, D., Scott, K., Schieber, S., Waldo, J., Weinberger, D., Weller, A., & Wood, A. (2017). Accountability of AI Under the Law: The Role of Explanation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3064761
Engel, C., Linhardt, L., & Schubert, M. (2024). Code is law: how COMPAS affects the way the judiciary handles the risk of recidivism. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-024-09389-8
Felzmann, H., Villaronga, E. F., Lutz, C., & Tamò-Larrieux, A. (2019). Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data & Society, 6(1). https://doi.org/10.1177/2053951719860542
Gill, N., Drew, N., Rodrigues, M., Muhsen, H., Morales Cano, G., Savage, M., Pathare, S., Allan, J., Galderisi, S., Javed, A., Herrman, H., & Funk, M. (2024). Bringing together the World Health Organization’s QualityRights initiative and the World Psychiatric Association’s programme on implementing alternatives to coercion in mental healthcare: a common goal for action. BJPsych Open, 10(1), e23. https://doi.org/10.1192/bjo.2023.622
Hardyns, W., & Rummens, A. (2018). Predictive Policing as a New Tool for Law Enforcement? Recent Developments and Challenges. European Journal on Criminal Policy and Research, 24(3), 201–218. https://doi.org/10.1007/s10610-017-9361-2
Jefferson, B. J. (2018). Predictable Policing: Predictive Crime Mapping and Geographies of Policing and Race. Annals of the American Association of Geographers, 108(1), 1–16. https://doi.org/10.1080/24694452.2017.1293500
Johnson, G. M. (2021). Algorithmic bias: on the implicit biases of social technology. Synthese, 198(10), 9941–9961. https://doi.org/10.1007/s11229-020-02696-y
Joshi, N. (2024). Emerging Challenges in Privacy Protection with Advancements in Artificial Intelligence. International Journal of Law and Policy, 2(4), 55–77. https://doi.org/10.59022/ijlp.171
Kalra, N., Verma, P., & Verma, S. (2024). Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques. Computers in Biology and Medicine, 179, 108917. https://doi.org/10.1016/j.compbiomed.2024.108917
Kejahatan Tindak Pidana Kesusilaan Dalam, M., Rahma Karunia, A., Nabila Darmadi, A., Listya Sunika, H., Abi Ramadhan Sutiyoh, M., Sellamita, S., Negeri Malang, U., Semarang, J., & Timur, J. (2024). Mengurai Kejahatan Tindak Pidana Kesusilaan Dalam Kompleksitas Hukum di Indonesia Ditinjau dari Kitab Undang-Undang Hukum Pidana Nasional, Undang-Undang Perlindungan Anak, dan Undang-Undang Informasi Transaksi dan Elektronik. Lentera Ilmu, 1(1), 28–40. https://doi.org/10.59971/LI.V1I1.21
King, T. C., Aggarwal, N., Taddeo, M., & Floridi, L. (2020). Artificial Intelligence Crime: An Interdisciplinary Analysis of Foreseeable Threats and Solutions. Science and Engineering Ethics, 26(1), 89–120. https://doi.org/10.1007/s11948-018-00081-0
Leenes, R., Palmerini, E., Koops, B.-J., Bertolini, A., Salvini, P., & Lucivero, F. (2017). Regulatory challenges of robotics: some guidelines for addressing legal and ethical issues. Law, Innovation and Technology, 9(1), 1–44. https://doi.org/10.1080/17579961.2017.1304921
O’Connor, S., & Liu, H. (2024). Gender bias perpetuation and mitigation in AI technologies: challenges and opportunities. AI & SOCIETY, 39(4), 2045–2057. https://doi.org/10.1007/s00146-023-01675-4
Palmerini, E. (2013). The interplay between law and technology, or the RoboLaw project in context. Law and Technology : The Challenge of Regulating Technological Development. - ( RoboLaw Series ; 1), 7–24. https://doi.org/10.1400/219014
Re, R. M., & Solow-Niederman, A. (2019). Developing Artificially Intelligent Justice. Stanford Technology Law Review, 22. https://heinonline.org/HOL/Page?handle=hein.journals/stantlr22&id=243&div=&collection=
Rodrigues, R. (2020). Legal and human rights issues of AI: Gaps, challenges and vulnerabilities. Journal of Responsible Technology, 4, 100005. https://doi.org/10.1016/j.jrt.2020.100005
Rummens, A., Hardyns, W., & Pauwels, L. (2017). The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context. Applied Geography, 86, 255–261. https://doi.org/10.1016/j.apgeog.2017.06.011
Spalevic, Ž., & Ilić, M. (2024). Artificial Intelligence In The Court Justice System. TEME, 745. https://doi.org/10.22190/TEME240110042S
Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The Ethics of Algorithms: Key Problems and Solutions (pp. 97–123). https://doi.org/10.1007/978-3-030-81907-1_8
Umoga, U. J., Sodiya, E. O., Ugwuanyi, E. D., Jacks, B. S., Lottu, O. A., Daraojimba, O. D., & Obaigbena, A. (2024). Exploring the potential of AI-driven optimization in enhancing network performance and efficiency. Https://Magnascientiapub.Com/Journals/Msarr/Sites/Default/Files/MSARR-2024-0028.Pdf, 10(1), 368–378. https://doi.org/10.30574/MSARR.2024.10.1.0028
Vattikuti, M. C. (2024). Improving Drug Discovery and Development Using AI: Opportunities and Challenges. Research-Gate Journal, 10(10). https://research-gate.in/index.php/Rgj/article/view/52