Analisis Sentimen Pada Twitter Terhadap Kualitas Udara Jakarta Menggunakan Metode NBC.
Abstract
According to the Jakarta Air Quality Index (AQI US) 12 July 2023, 200 indicates unhealthy air quality with an index value between 151 and 200. This figure even shows that Jakarta is currently the second most polluted city in Southeast Asia. (CNN Indonesia., 2023). This incident gave rise to responses from the public which were expressed via social media Twitter. From this incident, sentiment analysis was carried out regarding Jakarta's air quality. The amount of data used for this research was 500 tweet data. The results of the positive and negative sentiment analysis show that negative sentiment appears more frequently than positive sentiment with a percentage of 7% positive sentiment and 14% negative sentiment, by using the Rstudio application. This method uses the naïve Bayes classifier. Data division in the dataset with training data 1:499 and test data 1:476. It was found that the results of the Accuracy, Precision, Recall, and F1-Score values were Accuracy 87.50%, Precision 87.50 Recall 93.33%, and F1-Score 82.35%.
References
Astuti, A. P., Alam, S., & Jaelani, I. (2022). Komparasi Algoritma Support Vector Machine dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo. Jurnal Bangkit Indonesia, 11(2), 1-6.
Azhar, M., Hafidz, N., Rudianto, B., & Gata, W. (2020). Marketplace Sentiment Analysis Using Naive Bayes And Support Vector Machine. Piksel: Penelitian Ilmu Komputer Sistem Embedded And Logic, 8(2), 91-100.
Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional. Jurnal Tekno Kompak, 15(1), 131-145.
Fikri, Mujaddid Izzul, Trifebi Shina Sabrila, and Yufis Azhar. "Perbandingan metode naïve bayes dan support vector machine pada analisis sentimen twitter." SMATIKA Jurnal: STIKI Informatika Jurnal 10.02 (2020): 71-76.
Irsyad, H., & Pribadi, M. R. (2020). Klasifikasi Opini Terhadap Pertanian Sawit (Palm Oil) Indonesia Menggunakan Naïve Bayes. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 6(2), 230-239.
Hidayatulloh, M. Y., Sunanto, A., Armansyah, A., Gevin, M. F. A., & Saputra, D. D. (2023). Optimasi Sentimen Analisis Informatif dan Tidak Informatif dari Tweet di BMKG Menggunakan Algoritma Naive Bayes dan Metode Teknik Pengambilan Sampel Minoritas Sintetis. J-SAKTI (Jurnal Sains Komputer dan Informatika), 7(1), 1-12.
Hant, M. I. P., & Hendry, H. (2022). DATA MINING TECHNIQUE USING NAÏVE BAYES ALGORITHM TO PREDICT SHOPEE CONSUMER SATISFACTION AMONG MILLENNIAL GENERATION. Jurnal Teknik Informatika (Jutif), 3(4), 829-838.
Pribadi, M. R., Purnomo, H. D., Hartomo, K. D., Sembiring, I., & Iriani, A. (2022, October). Improving the accuracy of text classification using the over sampling technique in the case of sinovac vaccine. In 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 106-110). IEEE.
Manalu, D. R., Tobing, M. C. L., & Yohanna, M. (2022). ANALISIS SENTIMEN TWITTER TERHADAP WACANA PENUNDAAN PEMILU DENGAN METODE SUPPORT VECTOR MACHINE. METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, 6(2), 149-156.
Mufidah, F. S., Winarno, S., Alzami, F., Udayanti, E. D., & Sani, R. R. (2022). Analisis Sentimen Masyarakat terhadap Layanan Shopeefood Melalui Media Sosial Twitter dengan Algoritma Naïve Bayes Classifier. vol, 7, 14-25.
Pandunata, P., Ananta, C. K., & Nurdiansyah, Y. (2022). Analisis Sentimen Opini Publik Terhadap Pekan Olahraga Nasional Pada Instagram Menggunakan Metode Naïve Bayes Classififer. INFORMAL: Informatics Journal, 7(2), 146-156.