Analisis Sentimen Masyarakat Terhadap Resesi Ekonomi Global 2023 Menggunakan Algoritma Naïve Bayes Classifier

Authors

  • Sriani Universitas Islam Negeri Sumatera Utara
  • Aidil Halim Lubis Universitas Islam Negeri Sumatera Utara
  • Yunus Fadillah Harahap Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.51903/elkom.v16i2.1673

Keywords:

Global Economic Recession, Sentiment Analysis, Naïve Bayes Classifier

Abstract

The global economic recession is a global economic downturn that affects the domestic economies of countries in the world. The stronger the economic dependence of one country on the global economy, the faster a recession will occur in that country. In 2020 the country of Indonesia and even the world are exposed to the COVID-19 virus which has an impact on the country's economic growth, even the world economy. This is the trigger for an economic recession. This has led to many different public perspectives on the occurrence of a global economic recession whose opinions or reactions are expressed on social media Youtube. The data was obtained by crawling techniques from social media Youtube with a total of 500 comments used. The data is then labeled (class) with a lexicon-based method with an Indonesian language dictionary. From the labeling results, it was obtained 185 positive labeled data (37%) and 315 negative opinions (63%). The data preprocessing stage is carried out in preparation for the data to be processed for sentiment analysis. Of the many opinions obtained, an analysis of public sentiment regarding the 2023 global economic recession will be carried out using the Naïve Bayes classification algorithm. This study also applied the TF-IDF word weighting method with the n-gram feature used, namely bigram (n=1). The system will be evaluated using a confusion matrix. The implementation results show a prediction model with a total of 500 opinion data with a comparison of training data and test data of 9:1, producing an accuracy value of 84.00%, a precision value of 75.00%, a recall of 30.00%, and an f1-score of 42.86%. The performance of the system model built in this study can be said to be good.

References

[1] Blandina, S. R., Fitrian, A. N., & Septiyani, W. (2020). Strategi Menghindarkan Indonesia dari Ancaman Resesi Ekonomi di Masa Pandemi. Efektor, 7(2), 181–190. https://doi.org/10.29407/e.v7i2.15043
[2] Redaksi, T. Merinding! Ini Pidato Jokowi, Sri Mulyani & Luhut Soal Resesi. CNBN Indonesia [Internet]. [cited 2023 Mei 11]. Available form: https://www.cnbcindonesia.com/news/20220930065738-4-376136/merinding-ini-pidato-jokowi-sri-mulyani-luhut-soal-resesi
[3] Putri, R. S. Sri Mulyani Pastikan 2023 Indonesia Tidak Terkena Resesi: Insya Allah Kita Jaga Terus. Tempo.Co [Internet]. [cited 2023 Mei 11]. Available form: https://bisnis.tempo.co/read/1677026/sri-mulyani-pastikan-2023-indonesia-tidak-terkena-resesi-insya-allah-kita-jaga-terus
[4] Agustina, N. C. ., Citra, D. H., Purnama, W., Nisa, C., & Kurnia, A. R. (2022). Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store. Indonesian Journal of Machine Learning and Computer Science, 2(1), 47–54.
[5] Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naïve Bayes untuk Rekomendasi Pakaian Wanita. Jurnal Informatika, 6(1), 18–22. https://doi.org/10.31311/ji.v6i1.4685
[6] Toepak, E. W., Arwani, I., & Afirianto, T. (2018). Pembangunan Aplikasi Penyedia Informasi Lowongan Pekerjaan Menggunakan Youtube API Pada Smartphone Android. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(1), 168–174.
[7] Anggraini, M., Tyas, R. A., Sulasiyah, I. A., & Aini, Q. (2020). Implementasi Algoritma Naïve Bayes Dalam Penentuan Rating Buku. Sistemasi, 9(3), 557. https://doi.org/10.32520/stmsi.v9i3.915
[8] Fajri, A. R. H., Roy, B. S., Mubarok, H., Pangestu, A. D., & Prasvita, D. S. (2021). Analisis Sentimen Pengguna Twitter terhadap Konflik antara Palestina dan Israel Menggunakan Metode Naïve Bayesian Classification dan Support Vector Machine. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, September, 166–175.
[9] Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng - Seri Informatika, 3(1), 50–59. https://doi.org/10.35314/isi.v3i1.335
[10] Salam, A., Zeniarja, J., & Khasanah, R. S. U. (2018). Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia). Prosiding SINTAK, 480–486.
[11] Mahendrajaya, R., Buntoro, G. A., & Setyawan, M. B. (2019). Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine. Komputek, 3(2), 52. https://doi.org/10.24269/jkt.v3i2.270
[12] Aline, B. Lexicon-Based Sentiment Analysis: A Tutorial. Knime. [Internet]. [cited 2023 Mei 11]. Available form: https://doi.org/https://www.knime.com/blog/lexicon-based-sentimen-analysis

Downloads

Published

2023-12-30

How to Cite

[1]
Sriani, A. H. Lubis, and Y. F. . Harahap, “Analisis Sentimen Masyarakat Terhadap Resesi Ekonomi Global 2023 Menggunakan Algoritma Naïve Bayes Classifier”, ELKOM, vol. 16, no. 2, pp. 442–450, Dec. 2023.