The Prediksi Curah Hujan Pada Stasiun BMKG (CITEKO) Menggunakan Metode Backpropogation Neural Network
DOI:
https://doi.org/10.51903/elkom.v17i1.1921Keywords:
Backpropagation Neural Networks, Data Mining, Prediction, Rainfall.Abstract
Accurate rainfall prediction is needed to improve the performance of land that always uses rainfall data. Data mining or often called knowledge discovery in databases (KDD) is an activity that includes collecting, using historical data to find regularities, patterns or relationships in large data. In predicting rainfall, there are several conditions that can be observed as reference data to predict rainfall, namely wind speed, temperature, and air humidity. In this research, a backpropagation artificial neural network prediction method is developed that can be used in predicting future rainfall. The backpropogation artificial neural network method that was built produced an accuracy value of 95.36%, a precision value of 90.50%, a recall value of 97.50% and an f-measure value of 92.00%
References
Davies, and Paul Beynon, 2004, "Database Systems Third Edition", Palgrave Macmillan, New York.
Ernawati, S. (2009). Aplikasi Hopfield Neural Network untuk Prakiraan Cuaca. Meteorologi dan Geofisika, 151-175.
Fausett L. 1994. Fundamentals of Neural Network. New York: Prentice Hall.
Fayyad, Usama, 1996, “Advances in Knowledge Discovery and Data Mining”, MIT Press.
Handayani, Lestari, Adri Muhammad.2015. Penerapan JST (Backpropagation) untuk
Prediksi Curah Hujan (Studi Kasus: Kota Pekanbaru).
Heaton, J., “Introduction to Neural Network with Java”, http://www.heatonresearch.com/articles/6/ page2.html, 2003.
Hermawan, A. (2006). Jaringan Syaraf Tiruan Teori dan Aplikasi. Yogyakarta: Andi.
J.J.Siang. 2004. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta. Andi.
Larose, Daniel T.2015, Data mining and predictive analytics,John Wiley & Sons, Inc., Hoboken, New Jersey.s
Nikentari, Nerfita, Kurniawan, Hendra, Ritha, Nola, Kurniawan, Denny.2017. Optimasi Jaringan Syaraf Tiruan Bacpropagation dengan Particle Swarm Optimization untuk Prediksi Pasang Surut Air Laut.
P.Udayana, Made Dwi, Gandhiadi, G.K, H.Ida Putu Luh.2016. Implementasi Backpropagation Neural Network Dalam Prakiraan Cuaca Di Daerah Bali Selatran.
P.Yuniar Siti, Gernowo, Rahmat.2015. Evaluasi Model Jaringan Syaraf Tiruan Metode Backpropagagation Untuk Prediksi Iklim Ekstrim Dengan Korelasi Curah Hujan dan Tinggi Muka Laut di semarang.
Puspitaningrum, D. (2006) Pengantar Jaringan Saraf Tiruan. Yogyakarta: Andi.
Rahmalia, Dinita, Herlambang, Teguh.2017. Prediksi Cuaca Menggunakan Algoritma Particle Swarm Optimization-Neural Network (PSONN).
Ritha, Nola, Bettiza Martaleli, Dufan, Ariel.2016. Prediksi Curah Hujan dengan Menggunakan Algoritma Levenberg-Marquardt dan Backpropagation.
Shukla, A. Tiwari, R., & Kala, R. 2010. Real Life Application of Soft Computing. Taylor and Francis Groups, LLC.
Simon Haykin., Neural Networks – a Comprehensive Foundation. Prentice Hall, New Jersey, 2 nd edition, 1999. ISBN 0-13-273350-1.
TP.Manalu, Marihot.2016. Jaringan Syaraf Tiruan untuk Memprediksi Curah Hujan Sumatra Utara dengan Metode Back Propagation (Studi Kasus: BMKG Medan).
Turban, E, 2005, Decision Support Systems and Intelligent Systems Edisi Bahasa Indonesia Jilid 1. Andi: Yogyakarta.
Whidhiasih, R. N., Guritman, S., Suprio, P.T.2012.Klasifikasi Kematangan Buah Manggis Ekspor dan Lokal Berdasarkan Warna dan Tekstur Menggunakan Fuzzy Neural Network.Jurnal Ilmu Komputer Agri-Informatika, 2, 71-77.
Yunita. 2017. Seleksi Fitur Menggunakan Backward Elimination Pada Prediksi Cuaca dengan Neural Network.
Yunita.2015. Prediksi Cuaca Menggunakan Metode Neural Network