The CLASSIFICATION OF PROSPECTIVE POLICY HOLDERS FOR SELECTING INSURANCE PRODUCTS USING A COMPARISON OF THE K-NEAREST NEIGHBOR METHOD AND THE NAIVE BAYES METHO
DOI:
https://doi.org/10.51903/elkom.v17i1.1922Keywords:
Data Mining, Classification, K-Nearest Neighbor, Naïve Bayes, Insurance Product SelectionAbstract
The insurance business within an insurance company offers insurance products owned by the insurance company. In every insurance product there is a premium payment and the premium is the income of an insurance company at the rate of the amount insured. The problem that PT BNI Life Insurance has is that there are many stops in premium payments such as policy redemptions due to errors in the benefits received or incorrect selection of the insurance product, this can reduce the achievement of targets for an insurance company. The aim of this research is to find out the best classification algorithm compared between K-Nearest Neighbor and Naive Bayes to predict the type of insurance product that customers will choose. In this research, data mining methods are applied to compare two different methods, namely the K-Nearest Neighbor method and the Naïve Bayes method. The level of accuracy results for the K-Nearest Neighbor method is 80% and the Naïve Bayes method is 70.53%, which means that the K-Nearest Neighbor method is the best method to apply to an insurance product classification system based on the demographics of prospective customers.
References
Bustami (2014) ‘Penerapan Algoritma Naive Bayes Untuk Nasabah Asuransi’, Jurnal Informatika, 8(1), pp. 884–898.
Ode, W., Kadir, N. and Pramono, B. S. (2019) ‘Penerapan Data Mining Dengan Metode Knearest Neighbor (Knn) Untuk Mengelompokan Minat Konsumen Asuransi (PT. JASARAHARJA PUTERA)’, 5(1), pp. 97–104.
Chaira, L. M. et al. (2016) ‘Pemilihan Jenis Asuransi Berdasarkan Demografi Calon Pemegang Polis Dengan Metode Naïve Bayes Classifier’, Limits: Journal of Mathematics and Its Applications, 13(2), p. 11.
Betrisandi (2017) ‘Klasifikasi Nasabah Asuransi Jiwa Menggunakan Algoritma Naive Bayes Berbasis Backward Elimination’, 9(1), pp. 96–101.
Grassella, Purnamasari, I. and Amijaya, F. D. T. (2019) ‘Klasifikasi Status Pembayaran Premi Menggunakan Algoritma Neighbor Weighted K-Nearest Neighbor (Nwknn) (Studi Kasus: Pt. Bumiputera Kota Samarinda)’, VARIANCE: Journal of Statistics and Its Applications, 1(2), pp. 56–63.
Hidayatullah, Ari, E. Mudiawati dan M. Syafrullah, 2021, “Penerapan Data Mining untuk Memprediksi Minat Nasabah Terhadap Produk Asuransi Meninggal Dunia dengan Metode Naive Bayes (Studi Kasus : PT. BNI Life Insurance)”, Jurnal Teknologi Informasi, vol. 16, no 2, pp. 103-115.
Putri, H. Y. (2018) ‘Komparasi Data Mining Untuk Memprediksi Minat Klien Dalam Memilih Produk Asuransi Pendidikan ( Studi pada PT . AJB Bumiputera 1912 Karanganyar )’.
Khoerunnisa, A., Irawan, B. and Rumani, M. R. (2016) ‘Analisis dan implementasi perbandingan algoritma c.45 dengan naïve bayes untuk prediksi penawaran produk’, E-Proceeding of Engineering, 3(3), pp. 5029–5035.