Analisis Sentimen Bahasa Indonesia Pada Tempat Wisata Di Kabupaten Sukabumi Dengan Naive Bayes Classifier

Authors

  • Boby Rizki Atmadja Universitas Muhammadiyah Sukabumi

DOI:

https://doi.org/10.51903/elkom.v15i2.872

Keywords:

Analysis, Sentiment, Bayes, Tourism

Abstract

Sentiment analysis of comments from visitors to tourist attractions and the public on tourist attractions in Sukabumi Regency which is one of the areas with various categories of tourist objects and is a sector of economic income for the surrounding community or for related parties such as the government and managers, in sentiment analysis research This includes using the Nave Bayes classification algorithm to examine the sentiment of tourist visitors and the performance of the classification model used. The data used in this research was taken from the website from Tripadvisor and Google Maps using a crawling technique, which then processed the data by a pre-processing process and then applied a classification to the data and got a sentiment visualization by processing word frequency on tourist visitor sentiment data. The results of the accuracy of the model used were re-tested with the k-fold cross validation method and the results of sentiment visualization got the frequency of words that most often appear on negative sentiment labels are garbage, beaches, lacking, places, roads, parking, dirty, entering, caring, clean , expensive, pay, manage, good and water.

References

Eriyanto. (2021). Analisis Jaringan Media Sosial Dasar-Dasar dan Aplikasi Metode Jaringan Sosial untuk Membedah Percakapan di Media Sosial.
Findawati, Y. (2020). Buku Ajar Text Mining. In R. Dijaya (Ed.), Buku Ajar Text Mining. https://doi.org/10.21070/2020/978-623-6833-19-3
Fitriyah, N., Warsito, B., & Maruddani, D. A. I. (2020). Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM). Jurnal Gaussian, 9, 376–390. Retrieved from https://ejournal3.undip.ac.id/index.php/gaussian/
Hayatin, N., Marthasari, G. I., & Nuraini, L. (2020). Optimization of Sentiment Analysis for Indonesian Presidential Election using Naïve Bayes and Particle Swarm Optimization. Jurnal Online Informatika, 5(1), 81–88. Retrieved from www.kompas.com
Herwijayanti, B., Ratnawati, D. E., & Muflikhah, L. (2018). Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2, 306–312.
Muslehatin, W., Ibnu, M., & Mustakim. (2017). Penerapan Naive Bayes Classification untuk Klasifikasi Tingkat Kemungkinan Obesitas Mahasiswa Sistem Informasi UIN Suska Riau. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri.
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.
Rahmad, F., Suryanto, Y., & Ramli, K. (2020). Performance Comparison of Anti-Spam Technology Using Confusion Matrix Classification. IOP Conference Series: Materials Science and Engineering, 879(1), 0–11. https://doi.org/10.1088/1757-899X/879/1/012076
Saputra, R. A., Taufik, A. R., Ramdhani, L. S., Oktapiani, R., & Marsusanti, E. (2018). Sistem Pendukung Keputusan Dalam Menentukan Metode Kontrasepsi Menggunakan Algoritma Naive Bayes. Snit 2018, 1(1), 106–111. Retrieved from http://seminar.bsi.ac.id/snit/index.php/snit-2018/article/view/31
Saputri, N. A. O., & Zuhri, K. (2021). Analisis Sentimen Masyarakat Terhadap Pilpres 2019 Berdasarkan Opini Dari Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika, 7.
Sitepu, E., Simanjuntak, M., & Khair, H. (2022). Sistem Pakar Mendiagnosa Penyakit Kelainan Darah Pada Manusia Menggunakan Metode Bayes Berbasis Website. Jurnal Teknik Informatika Kaputama, 6.
Tripadvisor. (2022). Objek Wisara Terpopuler di Sukabumi. Retrieved February 5, 2022, from https://www.tripadvisor.co.id/Attractions-g297714-Activities-Sukabumi_West_Java_Java.html
Wahyulina, S., Darwini, S., Retnowati, W., & Oktaryani, S. (2018). Persepsi Wisatawan Muslim Terhadap Sarana Penunjang Wisata Halal Dikawasan Desa Sembalun Lawang Lombok Timur. Jmm Unram - Master of Management Journal, 7(1), 32–42. https://doi.org/10.29303/jmm.v7i1.400
Yahya, & Mahpuz. (2019). Penggunaan Algoritma K-Means Untuk Menganalisis Pelanggan Potensial Pada Dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat. Infotek : Jurnal Informatika Dan Teknologi, 2, 109–118.

Downloads

Published

2022-12-04

How to Cite

[1]
B. R. Atmadja, “Analisis Sentimen Bahasa Indonesia Pada Tempat Wisata Di Kabupaten Sukabumi Dengan Naive Bayes Classifier”, ELKOM, vol. 15, no. 2, pp. 371–382, Dec. 2022.