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ABSTRACT 
 

This research aims to predict customer churn in a 

telecommunications company using Logistic 

Regression (LR) and Gradient Boosting Classifier 

(GBC) algorithms. Customer churn poses a 

significant challenge as acquiring new customers is 

costlier than retaining existing ones. The dataset 

from Kaggle comprises 7043 records and 21 

attributes. The process includes data pre-processing, 

cleaning, transformation, and normalization using a 

Min-Max Scaler. The data is split into features (X) 

and target (y), then divided into training and testing 

sets with an 80:20 ratio. Both models were trained 

and evaluated using a confusion matrix. Results 

show that the GBC model outperforms the LR 

model, with an accuracy of 83% compared to LR's 

81%. This study demonstrates the effectiveness of 

GBC in predicting customer churn. 

 

Keywords:  Customer Churn, Logistic Regression, 

Gradient Boosting Classifier.

 

1. INTRODUCTION 
As time progresses, technology has advanced significantly, particularly in 

telecommunications. The telecommunications sector has become one of the most vital aspects of 

this era [1]. The competition in the telecommunications sector is becoming increasingly fierce, so 

companies must retain their existing customers to prevent them from switching to competitors 

[2]. Customers are valuable assets. Customers, often referred to as clients, can easily switch to 
competitors if dissatisfied with the service. Such customers are referred to as churned customers 

[3]. Customer churn, or customer attrition, is detrimental for telecommunications companies, 

considering the high cost of customer acquisition and the negative impact on long-term revenue 

[4]. The telecommunications industry experiences an average churn rate of over 30% [5]. 

Meanwhile, acquiring a new customer costs 5-10 times more than retaining an existing one [6]. 

Therefore, addressing churn is a primary focus and concern for telecommunications companies, 
as it can significantly impact their revenue and business sustainability [7]. In this increasingly 

competitive context, retaining existing customers has become crucial for telecommunications 

companies to ensure sustainable growth [8]. However, the main challenge in understanding and 

addressing churn is the complexity of the factors influencing customers' decisions to switch [9].  

 However, the main challenge in understanding and addressing churn is the complexity of 
the factors influencing customers' decisions to switch to learning and make predictions by 

identifying patterns that must be explicitly visible in computer programs [5]. Two algorithms that 

can be utilized are Logistic Regression (LR) and Gradient Boosting Classifier (GBC). LR is 
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chosen for its ability to provide clear interpretations of the factors influencing churn decisions 
[10], At the same time, GBC is selected for its capability to handle complex models and improve 

prediction accuracy [11]. 

The primary objective of this study is to develop and compare the performance of both 

methods in the context of the telecommunications industry. This research will focus on the 

implementation of  LR and GBC algorithms to predict customer churn and compare the accuracy 
levels of these two algorithms [12],[6]. 

 

2. LITERATURE REVIEW 

In telecommunications, customer churn prediction has become a widely researched topic. 

Several previous studies have explored the use of various machine-learning techniques to predict 

customer churn [13],[14]. Different machine learning models applicable for predicting customer 
churn include Support Vector Machines, Decision Trees, Regression Models, Neural Networks, 

Clustering, and Bayesian Models [13]. 

Geetha, et al. [15] propose using a random forest classifier and support vector machine 

algorithms to predict customer churn. This approach involves 21 customer activity attributes, 

which are then input into the algorithm for churn prediction. This research emphasizes the 
importance of data collection, preprocessing, and classifying raw data into churn and non-churn 

customers to facilitate effective churn prediction in the telecommunications sector. 

Li and Zhou [16] propose a user segmentation and piecewise regression approach to 

identify relevant features and build different churn prediction models for each customer segment. 

Additionally, this study discusses the challenges faced in customer retention strategies, 

emphasizing the importance of identifying vulnerable customer groups and implementing 
effective retention measures. 

Kavitha, et al. [1] Several machine learning methods, including the random forest 

algorithm, logistic regression, and XGBoost, were compared for customer churn prediction and 

classification. This research emphasizes the importance of feature selection and engineering in 

enhancing classification performance, ensuring the selection of relevant variables for accurate 
prediction. 

 

3. METHODS 
In this study, two machine learning algorithms are used to predict customer churn in 

telecommunications companies: LR and GBC. The research focuses on comparing the 

classification accuracy of  LR and GBC. The process begins with inputting the dataset, 

performing data preprocessing, splitting the data into training and testing sets, and then 

classifying using LR and GBC. The stages of this process are illustrated in Figure . 
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Figure 1. Research model 

3.1 Dataset 

In this study, the dataset is sourced from Kaggle Datasets. The dataset can be downloaded 

from the link https://www.kaggle.com/datasets/blastchar/telco-customer-churn, containing a 

total of 7043 records and 21 attributes. A sample of the dataset is shown in Table 1. 

 
Table 1. Description of each data attribute. 

Variable Description Type Data 

Customerid A unique identifier for each customer. Categorical 

Gender The gender of the customer Categorical 

Seniorcitizen Whether the customer is a senior citizen. Numerical 

Partner Whether the customer has a partner. Categorical 
Dependents Whether the customer has dependents. Categorical 

Tenure The number of months the customer has been with 

the company. 

Numerical 

Phoneservice Whether the customer has phone service. Categorical 

Multiplelines Whether the customer has multiple lines. Categorical 
Internet service The type of internet service the customer has. Categorical 

Online Security Whether the customer has online security. Categorical 

Online backup Whether the customer has online backup. Categorical 
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Device 
protection 

Whether the customer has device protection. Categorical 

Tech support Whether the customer has tech support. Categorical 

Streamingtv Whether the customer has streaming TV. Categorical 

Streamingmovies Whether the customer has streaming movies. Categorical 

Contract The type of contract the customer has. Categorical 
Paperlessbilling Whether the customer has paperless billing. Categorical 

Paymentmethod The method of payment the customer uses. Categorical 

Monthlycharges The monthly charges for the customer’s service. Numerical 

Totalcharges The total charges incurred by the customer. Categorical 

Churn Whether the customer has churned. Categorical 

 
 

3.2  Pre-processing Data 

Data pre-processing is crucial in data analysis and machine learning model development, 

as data quality directly affects prediction outcomes. Data pre-processing includes data 
cleaning, variable transformation, and splitting the data into appropriate subsets for model 

training and testing. 

1. Data cleansing 

The initial stage in data pre-processing is data cleaning, which involves 
identifying and handling missing values and removing duplicate data [17]. In the 

Telco Customer Churn dataset, the ‘customerID’ column is removed as it is 

irrelevant to the churn prediction analysis. Additionally, missing values in the 
‘TotalCharges’ column are filled with the median of that column to avoid bias in 

the model.  

2. Data transformation 

Converting categorical data into numerical form, categorical variables must be 
converted into numeric form [18]. This is done by encoding categorical variables 

into dummy variables. For example, the ‘gender’ column is converted into 0 and 

1 to represent Female and Male categories. Similarly, other variables such as 
‘Partner’, ‘Dependents’, and ‘PhoneService’ are converted into numeric values. 

Categorical variables with more than two categories, such as ‘InternetService’ 

and ‘PaymentMethod’, are transformed into dummy variables using one-hot 

encoding techniques. 

3. Data Normalization 

Data normalization is adjusting the scale of features to be within the same range, 

typically from 0 to 1, to improve the performance and convergence of machine 
learning models [19]. 

4. Data Split 

The final step in pre-processing is splitting the data into training and testing 

subsets. The data is divided into an 80:20 ratio, where 80% of the data is used to 
train the model, and the remaining 20% is used to test the model. The data is 

randomly split to ensure that each subset is representative of the overall data 

distribution [20]. 

 

3.3 Classification Algorithm 

Classification is an essential part of machine learning that uses classification to organize 

data into specific categories or classes. This technique benefits various applications, from 

pattern recognition to customer churn prediction. In this stage, two classification algorithms 
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are employed: LR and GBC, each with advantages. 

 

3.4 Classification using logistic regression 

The logistic regression algorithm predicts the probability of a binary event (two classes). 

This model is well-suited for cases where the dependent variable is dichotomous, such as 

customer churn prediction. LR employs the logit function to link independent variables to the 
class probability. The advantages of LR include easy interpretability and relatively fast 

computational efficiency [10, 17]. using the logistic function logistic regression algorithm 

formula in the Equation (1 . 

 

𝐿𝑜𝑔𝑖𝑡[𝑝(𝑥)] =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑥2+⋯.+𝛽𝑘𝑥𝑘)

 (1) 

 

 
1. Probability calculation 

The logistic regression model determines the likelihood of a binary result. 𝐿𝑜𝑔𝑖𝑡[𝑝(𝑥)] 
using the logistic function. 

2. Rounding to a binary value 

The calculated probabilities are then rounded to a binary value of 0 or 1 based on a 

threshold of 0.5 [21]. If 𝐿𝑜𝑔𝑖𝑡[𝑝(𝑥)] > 0.5, the prediction is 1. While 𝐿𝑜𝑔𝑖𝑡[𝑝(𝑥)]  < 0.5, 
then the prediction is 0. 

 

3.5 Classification using gradient boosting classifier 

The gradient boosting classifier is an ensemble technique that combines multiple weak 
models, such as decision trees, to form a robust predictive model. This algorithm works by 

sequentially adding new models to correct the errors of the previous models. GBC is known 

for its high accuracy and flexibility in handling complex data. However, this algorithm also 

requires longer training times and is prone to overfitting if the parameters are not carefully 

tuned [22]. gradient boosting classifier algorithm formula in Equation (2. 

 

𝐹𝑚(𝑥) = 𝐹𝑚−1 (𝑥) + 𝑛. ℎ𝑚(𝑥) (2) 

1.  The first model 

𝐹𝑚(𝑥) is initialized by predicting the target's mean value or mode. At each iteration 𝑚 a 

new model  ℎ𝑚(𝑥) is added to correct errors from the previous model. 

2. New model fittings 

New model ℎ𝑚(𝑥) It was built to minimize the remaining loss from the previous model 

by calculating the gradient. 

3. Final Prediction 
A combination of all the weak models was added during the iteration. 

 

𝐹𝑚(𝑥) = 𝐹0(𝑥) + 𝑛 ∑ ℎ𝑚(𝑥)
𝑀

𝑚=1

 (3) 

 

3.5 Model Testing 

Model evaluation is a crucial step in the machine learning process. The confusion matrix 
is an essential evaluation tool in analyzing classification models, used to assess the accuracy of 

the model's predictions on the test data. This matrix provides details on the number of correct and 

incorrect predictions for each class, consisting of four main components: True Positive (TP), True 
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Negative (TN), False Positive (FP), and False Negative (FN) [23]. The accuracy calculation uses 

Equation (4. 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  
 (4) 

 

TP and TN indicate the correct predictions for the positive and negative classes. At the 

same time, FP and FN show the number of incorrect predictions for the positive and negative 
classes. A confusion matrix allows for calculating various evaluation metrics such as accuracy, 

precision, recall, and F1-score, providing a comprehensive insight into the model's performance 

[24]. 

 

4. RESULTS AND DISCUSSION 

This research uses LR and GBC algorithms to predict customer churn on the Telco 

Customer Churn dataset from Kaggle. After data collection, the next step is data preprocessing, 

which includes cleaning, variable transformation, and splitting the data into training and testing 
subsets. Then, the algorithm models are evaluated using a confusion matrix. In this study, the 

variable ‘churn’ is the primary target for prediction. Meanwhile, other attributes such as ‘gender,’ 

‘tenure,’ ‘partner,’ ‘total charges, and others will be used as predictors. The dataset retrieval 

process can be seen in Figure. 

 

Figure 2. Upload dataset Telco 

The next step is the data pre-processing stage, where the initial process involves data 
cleaning. Irrelevant data that does not contribute to the churn prediction analysis can be removed. 

An example of the cleaned dataset can be seen in Figure. 
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Figure 3. The cleaned dataset 

The next step is exploratory data analysis of the target ‘churn’ numerical and categorical 
variables. This helps in understanding data distribution, identifying patterns and factors 

influencing churn, and discovering correlations between variables. Correlations between 

numerical and categorical variables can be seen in 

Figure 4 and Figure 5. 

 

Figure 4. Correlation of numerical variables with targets 
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Figure 5. Correlation of categorical variables with targets 

The next stage is data transformation, where categorical data is converted into numeric 

types. This process facilitates handling the dataset when used in the learning model.  An example 
of the processed data can be seen in Table 2. 

 
Table 2. Data transformation 

Atribut Value Transformation 

Gender Female 0 

Male 1 
Partner Yes 1 

No 0 

Dependents Yes 1 

No 0 

 

Next, data normalization is performed using a min-max scaler to standardize the values 

by mapping the data to a range of 0-1. The results of the normalization are shown in Table 3. 
 

Table 3. The dataset after normalization. 

No Gender Tenure MonthlyCharges TotalCharges … 

0 1 0.000000 0.115423 0.001275 … 

1 0 0.464789 0.385075 0.215867 … 

2 0 0.014085 0.354229 0.010310 … 

… … … … … … 

7042 0 0.915493 0.869652 0.787641 … 

 

 The next step involves splitting the data into testing and training data an 80:20 ratio. The first 

step before beginning the classification model process is to separate the preprocessed data into 

two parts: features (X) and target (y). The "Churn" variable is placed in the target (y), which is the 
variable to be predicted or classified, while the other variables are included in the features (X). 

The subsequent step is to build classification models using the LR and GBC algorithms and 

compare the accuracy results of both algorithms. 
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 The classification results using the LR and GBC algorithms are evaluated with a confusion 

matrix, which shows the number of correct and incorrect predictions for each class. The 
classification results based on the confusion matrix can be seen in Table 4 and  

Table 5. 

 

Table 4. Confusion matrix LR 

 No churn Churn 

No churn 3707 423 
Churn 661 834 

 

 Based on the confusion matrix calculations shown in Table 4, the computations using 

Equation (4 Yield the following results. 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 

 

 

=
3707 + 834

3707 + 661 + 834 + 423
× 100% = 81%

 

 

 

 

 

 

 
Table 5. Confusion matrix GBC 

 No churn Churn 

No churn 3784 346 

Churn 619 876 

 

 Based on the confusion matrix calculations shown in  

Table 5, the computations using Equation (4 yield the following results. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 

 

=
3784 + 876

3784 + 619 + 876 + 346
× 100% = 83%

 

 

 This study focuses on comparing the classification accuracy of LR and GBC. The 

comparison of classification results between the two algorithms can be seen in Table 6. 

 

Table 6. Comparison of LR and GBC Algorithm Accuracy. 

Algorithm Accuracy 

Logistic regression 81% 

Gradient boosting classifier 83% 

 

 Based on Table 6, The evaluation results show that the GBC model outperforms the LR 

model. The confusion matrix for GBC indicates an accuracy of 83%, highlighting its 

effectiveness in identifying potential churn customers.  
 

4. Conclusion 
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This study aims to develop and compare the performance of two machine learning 
algorithms, LR and GBC, in predicting customer churn in the telecommunications industry. The 

research results indicate that both models have significant capabilities in predicting churn, with 

LR showing an accuracy of 81% and GBC demonstrating an accuracy of 83%. LR offers ease of 

interpretability and computational efficiency, while GBC exhibits high accuracy and can handle 

complex data. Model evaluation using metrics provides a comprehensive view of the models' 
performance. 

 The results of this study demonstrate that the appropriate combination of machine 

learning techniques can provide effective solutions to customer churn, a significant challenge for 

telecommunications companies. The study also highlights the importance of the data pre-

processing stage and the selection of appropriate evaluation metrics to achieve accurate results 
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