JURNAL ILMIAH KOMPUTER GRAFIS, Vol.15, No.2, DES 2022, pp. 279 - 291

p-ISSN: 1979-0414(print) e-ISSN: 2621-6256 (online)

http://journal.stekom.ac.id/index.php/pixel

page 279

Pemeringkatan Penanganan Covid-19 di Kawasan Asia Menggunakan AHP-COPRAS

Taufan Cahya Laksana¹, Setyawan Wibisono²

¹Teknik Informatika, Universitas Stikubank Semarang

- Jl. Trilomba Juang No. 1, Semarang, 024-8451976, taufanlaksana46@gmail.com
- ²Teknik Informatika, Universitas Stikubank Semarang
- Jl. Trilomba Juang No. 1, Semarang, 024-8451976, setyawan@edu.unisbank.ac.id

ARTICLE INFO

Article history:

Received 30 Sept 2022 Received in revised form Okt 2022 Accepted Nov 2022 Available online Des 2022

ABSTRACT

In this study, a ranking of the handling of Covid-19 in Asian countries was carried out using the AHP-COPRAS hybrid method. The ranking process uses the COPRAS (Complex Proportional Assessment) method, while the determination of the weight value uses subjective weighting but the criteria weights through a validation process using pairwise comparison which is part of the AHP (Analytical Hierarchy Process) method. The ranking process uses six assessment criteria: test per population, to positive per test, positive per population, healed per positive, died per positive, active per positive. The final result of the ranking shows that countries with high death cases and low cure cases will make the country's ranking fall, because cases of death and healing cases have the highest weight in their role in forming utility values.

Keywords: AHP-COPRAS, Asia, handling of Covid-19, rangking, pairwise comparison

1. Pendahuluan

Sejak akhir tahun 2019 kemunculan virus Covid-19 keadaan dunia menjadi tidak stabil, karena berdampak pada semua sektor kehidupan tanpa terkecuali. Hampir setiap hari terjadi kasus infeksi akibat virus tersebut, efek terpapar virus ini menyebabkan hilangnya indra penciuman dan pengecap, mengalami sakit kepala hingga yang paling fatal adalah kematian. Cara penyebaran sangat berbahaya langsung menyerang bagian pernafasan, dan mudah menginfeksi dengan melakukan kontak fisik secara langsung hingga saat ini melalui udara. Pertama kali munculnya Covid-19 berasal dari negara China tepatnya bagian Wuhan. Kasus yang paling tinggi akibat virus ini adalah negara bagian Asia, hampir setiap hari terjadi kasus aktif karena penularan yang begitu sangat cepat menyebar. Masalah ini sudah sangat serius untuk dihadapi dunia, maka dari itu para tenaga medis atau kesehatan melakukan penanganan kepada seseorang yang terpapar virus tersebut.

Varian Covid-19 dari awal kemunculan hingga sekarang terdapat 4 varian, yaitu Alpha, Beta, Delta dan yang terbaru adalah Omicron dari virus tersebut telah masuk ke Indonesia. Dari varian Covid-19 di atas kecuali *Omicron* memiliki gejala yang menimbulkan hampir sama secara signifikan seperti demam, sesak nafas, hingga indra penciuman hilang. Tingkat penularannya mencapai 30-100% termasuk angka yang sangat tinggi dan masa pemulihan ketika terpapar virus tersebut 2 minggu atau sampai 1 bulan lebih. Kemudian *Omicron* masih tergolong virus baru yang masuk pada bulan Desember 2021. Orang yang terpapar *Omicron* tidak memiliki gejala-gejala berat seperti virus yang sebelumnya.

Maka dari itu seluruh rumah sakit mengalami lonjakan pasien sehingga tidak dapat menampung para korban. WHO (World Health Organization) menyatakan untuk mengatasi virus berbahaya tersebut mulai menerapkan wajib menggunakan masker, mencuci tangan menggunakan sabun, dan selalu menjaga jarak antar satu dengan yang lain. Diberlakukan untuk tidak keluar rumah apabila tidak mendesak karena kasus aktif yang masih tinggi terumata pada negara Asia. Dan ada efek buruk ketika hal itu diberlakukan yaitu para pekerja dari segala bidang mengalami penurunan pendapatan hingga tidak dipekerjakan lagi di perusahaan atau tempat tersebut. Dampak nyata terjadi krisis ekonomi di seluruh dunia akibat covid-19 yang sangat berbahaya . Pada setiap negara di Asia masih memiliki keunggulan dan kekurangan mereka untuk mengatasi virus ini.

Berdasarkan kasus penyebaran Covid-19 pada beberapa negara Asia yang masih tinggi, maka penelitian ini akan difokuskan pada pemeringkatan negara Asia dalam penanganan Covid-19 menggunakan metode hibrid COPRAS-AHP. Dalam menentukan peringkat penanganan Covid-19 di negara Asia menggunakan metode COPRAS (Complex Proportional Assessment), sedangkan penentuan nilai bobot menggunakan pembobotan secara subjektif namun bobot kriteria melalui proses validasi menggunakan pairwise comparison yang merupakan bagian dari metode AHP (Analytical Hierarchy Process) [1].

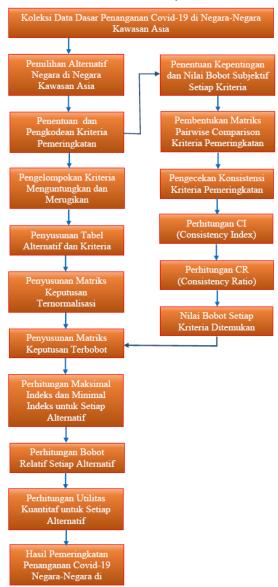
Complex Proportional Assesment (COPRAS) adalah salah satu metode yang digunakan dalam penerapan sistem pendukung pengambilan keputusan untuk melakukan proses analisis terhadap beberapa alternatif yang berbeda, serta memprediksikan alternatif yang mendekati kesesuaian tingkat utilitas masing-masing alternatif. Nilai atribut direpresentasikan pada suatu interval dengan tujuan peningkatan akurasi dalam pemeringkatan alternatif dengan berbasis pada kriteria yang menguntungkan dan kriteria yang merugikan [2], [3].

Kemudian Analytical Hierarchy Process (AHP) adalah suatu model fungsional dengan yang digambarkan sebagai sebuah hirarki, dengan masukan ditentukan secara subjektif berdasarkan persepsi manusia namun dengan tetap memperhatikan nilai kepantasan secara umum. Masalah yang bersifat kompleks dan tidak terstruktur dipecah-pecah dalam bagian-bagian yang membentuk suatu hirarki. Kriteri-kriteria diberikan secara subjektif nantinya akan menjadikan sebuah kontribusi relatif yang akan menentukan nilai kriteria objektif. Matriks perbandingan berpasangan digunakan untuk menghitung tingkat kepentingan suatu kriteria dibandingkan dengan kriteria lain. Perbandingan berpasangan dirancang menggunakan tabel yang menunjukkan tingkat kepentingan suatu bobot kriteria terhadap bobot kriteria lain [4], [5].

2. Metode

Pada penelitian ini, dilakukan suatu pemeringkatan penanganan Covid-19 di negara-negara Asia menggunakan metode hibrid AHP-COPRAS. Metode AHP digunakan pada bagian awal sebagai proses perhitungan konsistensi dan validasi bobot kriteria yang telah ditentukan secara subjektif. Metode Vol. 15, No. 2, Des 2022: 279 - 291

COPRAS digunakan sebagai metode untuk melakukan analisis alternatif serta digunakan sebagai dasar dalam memprediksikan alternatif dengan berdasar nilai utilitas setiap alternatif, dengan nilai kualitatf yang terkandung dalam atribut digunakan dalam peningkatan akurasi pada proses pengambilan keputusan [6].


Data dasar penanganan Covid-19 negera-negara Asia diperoleh secara sekunder melalui pengunduhan data dari worldometer.com pada tanggal 18 Juni 2022. Pada saat koleksi data melalui web worldometer, ada beberapa negara yang tidak tersedia data penanganan Covid-19, sehingga pada penelitian ini hanya negara Asia yang tercatat datanya pada tanggal 18 Juni 2022 yang dilakukan pemeringkatan pada penelitian ini.

Dari semua data negara Asia yang tercatat, maka semua negera Asia dijadikan sebagai alternatif pemeringkatan. Dasar pemeringkatan berasal dari beberapa kriteria penilaian. Kriteria penilaian ditentukan secara subjektif namun tetap mengedepankan asas kepantasan dalam penilaian penanganan Covid-19. Dalam penelitian ini kriteria yang menjadi dasar pemeringkatan adalah:

- 1. Jumlah total tes berbanding jumlah penduduk dalam satu negera.
- 2. Jumlah total kasus positif dibandingkan jumlah total tes yang dilakukan.
- 3. Jumlah total kasus positif dibandingkan jumlah total penduduk.
- 4. Jumlah total kasus sembuh dibandingkan jumlah total kasus positif.
- 5. Jumlah total kasus meninggal dibandingkan jumlah total kasus positif.
- 6. Jumlah total kasus aktif pada saat koleksi data.

Masing-masing kriteria diberikan bobot subjektif yang mencerminkan tingkat kepentingan suatu kriteria terhadap hasil pemeringkatan. Kriteria-kriteria kemudian dikonfigurasikan dalam suatu matriks perbandingan berpasangan, mengacu pada metode AHP. Hasil bobot kriteria dicek tingkat konsistensi dan validasinya. Jika telah memenuhi tingkat konsistensi dan valid, maka akan diperoleh suatu nilai bobot kriteria yang akan diimplementasikan pada sistem pemeringkatan ini.

Kriteria akan dikelompokkan dalam 2 kategori yaitu kriteria yang menguntungkan dan kriteria yang merugikan, yang dijadikan sebagai dasar penyusunan tabel alternatif dan kriteria. Tabel alternatif dan kriteria membutuhkan proses normalisasi untuk menghasilkan matriks keputusan ternormalisasi. Gabungan matriks keputusan ternormalisasi dan kriteria yang telah mendapat bobot dari proses AHP, maka dibuat matriks keputusan terbobot. Matriks keputusan terbobot akan menjadi dasar dalam perhitungan maksimal indeks dan minimal indeks untuk setiap alternatif, sehingga akan menghasilkan bobot relatif setiap alternatif. Bobot relatif setiap alternatif akan menjadi dasar dalam perhitungan utilitas kuantitatif setiap alternatif. Dari nilai utilitas kuantitatif inilah yang diambil sebagai hasil pemeringkatan penanganan Covid-19 di negara Asia. Nilai utilitas kuantitatif paling tinggi sebesar 100 persen, dan akan menjadi negara dengan penanganan Covid-19 terbaik. Langkahk-langkah perhitungan pemeringkatan dapat terlihat pada gambar 1.

Gambar 1. Alur Perancangan Sistem

Data dasar penanganan Covid-19 di negara-negara Asia diperoleh secara kumulatif pada 18 Juni 2022. Data mentah akan dilakukan proses pembersihan, yaitu data negara-negara yang tidak lengkap dalam penyajiannya akan dibuang. Data yang lengkap kemudian akan dipilih data-data yang dianggap penting dalam proses pemeringkatan. Data-data yang dianggap penting akan dijadikan sebagai kriteria dalam penilaian pemeringkatan. Pada tabel 1 diperlihatkan data set yang berisi data nama negara, jumlah penduduk, jumlah tes, jumlah kasus positif, jumlah kasus sembuh, jumlah kasus meninggal dan jumlah kasus aktif pada saat data diambil.

Tabel 1. Data Dasar Penanganan Covid-19 di Kawasan Asia

No	Nama Negara	Jumlah Penduduk	Jumlah Tes	Kasus Positif	Kasus Sembuh	Kasus Meninggal	Kasus Aktif
1	India	1.406.532.404	856.910.352	43.283.793	42.690.845	524.840	68.108

Vol. 15, No. 2, Des 2022: 279 - 291

2	Korea Selatan	51.355.441	15.804.065	18.270.481	18.079.222	24.427	166.832
3	Turki	86.113.509	162.743.369	15.085.742	14.986.340	98.996	406
4	Vietnam	99.050.998	85.823.796	10.736.408	9.591.486	43.083	1.101.839
5	Jepang	125.719.679	55.377.876	9.123.102	8.948.542	31.003	143.557
6	Iran	86.094.962	52.298.398	7.234.523	7.060.097	141.361	33.065
7	Indonesia	279.178.840	99.937.274	6.065.644	5.901.639	156.679	7.326
8	Malaysia	33.176.806	60.522.048	4.536.795	4.475.438	35.731	25.626
9	Thailand	70.142.391	17.270.775	4.497.152	4.445.392	30.448	21.312
10	Israel	9.326.000	41.373.364	4.220.532	4.160.530	10.882	49.120
11	Philippina	112.432.771	30.521.226	3.695.068	3.630.772	60.467	3.829
12	Taiwan	23.901.048	20.111.468	3.244.453	1.887.384	5.049	1.352.020
13	Irak	41.987.029	18.671.982	2.331.487	2.303.954	25.226	2.307
14	Bangladesh	167.897.465	14.214.805	1.955.427	1.905.711	29.131	20.585
15	Yordania	10.401.182	16.834.239	1.697.271	1.682.962	14.068	241
16	Pakistan	229.277.892	28.820.013	1.531.824	1.498.217	30.383	3.224
17	Singapura	5.940.303	23.877.882	1.360.780	1.276.816	1.402	82.562
18	Kazakhstan	19.215.846	11.575.012	1.305.917	1.292.140	13.663	114
19	Hong Kong	7.615.903	50.415.048	1.224.132	1.198.272	9.393	16.467
20	Lebanon	6.765.706	4.795.578	1.102.774	1.087.587	10.448	4.739
21	Nepal	30.161.394	5.738.257	979.333	967.277	11.952	104
22	UEA	10.124.049	166.525.927	924.434	905.176	2.306	16.952
23	Azerbaijan	10.317.864	6.901.005	792.919	783.019	9.715	185
24	Saudi Arabia	35.873.923	43.074.394	783.076	764.094	9.183	9.799
25	Sri Lanka	21.588.784	6.486.117	663.984	646.990	16.520	474
26	Kuwait	4.394.056	8.166.589	638.327	632.230	2.555	3.542
27	Myanmar	55.122.962	8.307.045	613.474	592.480	19.434	1.560
28	Bahrain	1.817.184	9.935.013	602.465	591.206	1.491	9.768
29	Palestina	5.333.248	3.078.533	582.890	577.303	5.356	231
30	Armenia	2.974.071	3.109.931	423.006	412.661	8.629	1.716
31	Oman	5.360.514	25.000.000	389.758	384.669	4.260	829
32	Qatar	2.807.805	3.604.442	374.591	370.596	678	3.317
33	Uzbekistan	34.417.594	1.377.915	239.525	237.599	1.637	289
34	China	1.439.323.776	160.000.000	225.207	219.067	5.226	914
35	Kyrgyzstan	6.734.646	1.907.195	201.016	196.406	2.991	1.619
36	Afghanistan	40.642.278	990.060	181.574	163.717	7.713	10.144
37	Maldives	559.157	2.213.831	179.979	163.687	299	15.993
38	Brunei	445.669	717.784	155.793	152.018	225	3.550
39	Kamboja	17.171.367	2.981.409	136.262	133.206	3.056	0
40	Bhutan	778.220	2.303.734	59.644	59.616	21	7

Pemeringkatan Penanganan Covid-19 di Kawasan Asia Menggunakan AHP-COPRAS (Taufan Cahya Laksana)

	•			p-ISSN : 1	979-0414	e-ISSN: 262	1-6256
41	Suriah	18.331.750	146.269	55.913	52.743	3150	20
42	Timor-Leste	1.367.540	268.125	22.928	22.774	133	21
43	Yaman	31.110.179	265.253	11.823	9.108	2.149	566

3. Hasil dan Pembahasan

3.1. Negara di Asia

Langkah awal dalam penelitian ini adalah menentukan negara-negara di Asia yang memilik data penanganan Covid-19 secara lengkap. Data penanganan Covid-19 diperoleh melalui koleksi data melalui situs worldometer yang memberikan data yang berkaitan langsung dengan penanganan Covid-19 di negara-negara seluruh dunia. Pada tahap awal ini negara-negara Asia dijadikan sebagai alternatif pemeringkatan seperti terlihat pada tabel 2.

TC 1 1	_	4 1	1.	. • .
Tabel	''	ΔΙ	teri	าวโป

Kode Alternatif	Negara	Kode Alternatif	Negara	Kode Alternatif	Negara
A1	India	A16	Pakistan	A31	Oman
A2	Korea Selatan	A17	Singapura	A32	Qatar
A3	Turki	A18	Kazakhstan	A33	Uzbekistan
A4	Vietnam	A19	Hong Kong	A34	China
A5	Jepang	A20	Lebanon	A35	Kyrgyzstan
A6	Iran	A21	Nepal	A36	Afghanistan
A7	Indonesia	A22	UEA	A37	Maldives
A8	Malaysia	A23	Azerbaijan	A38	Brunei
A9	Thailand	A24	Saudi Arabia	A39	Kamboja
A10	Israel	A25	Sri Lanka	A40	Bhutan
A11	Philippina	A26	Kuwait	A41	Suriah
A12	Taiwan	A27	Myanmar	A42	Timor-Leste
A13	Irak	A28	Bahrain	A43	Yaman
A14	Bangladesh	A29	Palestina		
A15	Yordania	A30	Armenia		

3.2. Kriteria

Kriteria adalah data yang akan menjadi dasar penentuan parameter pada pemeringkatan penanganan Covid-19 di negara-negara Asia. Pada proses penentuan kriteria akan sekaligus ditentukan tingkat kepentingan masing-masing kriteria dalam memberikan peran penilaian dalam penanganan Covid-19 di setiap negera Asia. Tingkat kepentingan ditentukan secara subjektif namun dengan tetap mempertimbangkan tingkat kepantasan dalam pandangan umum [7]. Pengelompokan kriteria berdasarkan tingkat kepentingan diperlihatkan pada tabel 3.

Tabel 3. Kriteria

Kode	Kriteria	Tingkat Kepentingan
C1	TPJP (Tes Per Jumlah Penduduk)	Penting
C2	PPT (Positif Per Tes)	Lebih Penting
C3	PPJP (Positif Per Jumlah Penduduk)	Lebih Penting

Vol. 15, No. 2, Des 2022: 279 - 291

C4	SPP (Sembuh Per Positif)	Paling Penting
C5	MPP (Meninggal Per Positif)	Paling Penting
C6	APP (Aktif Per Positif)	Sangat Penting

3.3. Kriteria berdasarkan Jenis Kriteria

Secara umum kriteria-kriteria yang telah ditentukan akan dibedakan dalam dua tipe kriteria yaitu kriteria yang menguntungkan dan kriteria yang merugikan. Kriteria yang menguntungkan dapat dipahami sebagai kriteria yang jika nilainya semakin tinggi akan semakin baik dalam memberikan dampak terhadap hasil pemeringkatan. Kriteria yang merugikan dapat dipahami secara sederhana sebagai kriteria yang jika nilainya semakin tinggi akan semakin buruk dalam memberikan dampak terhadap hasil pemeringkatan. Pada tabel 4 diperlihatkan kelompok kriteria yang dinilai sebagai kriteria yang menguntungkan dan kriteria yang dinilai sebagai kriteria yang merugikan.

Tabel 4. Kriteria Berdasar Jenis

Kode	Kriteria	Kelompok Kriteria					
C1	TPJP (Tes Per Jumlah Penduduk)	Menguntungkan					
C2	PPT (Positif Per Tes)	Merugikan					
C3	PPJP (Positif Per Jumlah Penduduk)	Merugikan					
C4	SPP (Sembuh Per Positif)	Menguntungkan					
C5	MPP (Meninggal Per Positif)	Merugikan					
C6	APP (Aktif Per Positif)	Merugikan					

3.4. Kandidat Alternatif

Pada tahap penentuan kandidat alternatif, secara mudah dapat ditentukan dengan menghitung nilai setiap kriteria untuk setiap negara berdasarkan data dasar penanganan Covid-19 pada tabel 1. Dilanjutkan dengan mengkonstruksikan tabel yang merepresentasikan hubungan antara alternatif dan semua kriteria, seperti diperlihatkan pada tabel 5.

	Tabel 5. Kandidat Alternatif Pemeringkatan								
Alternatif	C1	C2	C3	C4	C5	C6			
A1	0,60923613	0,05051146	0,03077341	0,98630092	0,01212555	0,001573522			
A2	0,30773886	1,15606213	0,35576524	0,98953180	0,00133697	0,009131232			
A3	1,88987037	0,09269651	0,17518438	0,99341086	0,00656222	2,69128E-05			
A4	0,86646069	0,12509827	0,10839273	0,89336080	0,00401279	0,102626409			
A5	0,44048693	0,16474272	0,07256702	0,98086616	0,00339830	0,015735547			
•••	•••	•••	•••	•••	•••	•••			
•••	•••	•••	•••	•••	•••	•••			
A41	0,00797900	0,38226145	0,00305006	0,94330478	0,05633752	0,000357699			
A42	0,19606373	0,08551235	0,01676587	0,99328332	0,00580077	0,000915911			
A43	0,00852624	0,04457254	0,00038004	0,77036285	0,18176436	0,04787279			

3.5. Matriks Keputusan dan Normalisasi

Berdasarkan nilai yang dihasilkan pada tabel 5, maka dapat dihitung nilai total setiap kriteria untuk semua negara. Pada langkah ini dihasilkan matriks keputusan sebagai berikut:

	0,60923613	0,05051146	0,03077341	0,98630092	0,01212555	0,001573522
	0,30773886	1,15606213	0,35576524	0,98953180	0,00133697	0,009131232
	1,88987037	0,09269651	0,17518438	0,99341086	0,00656222	2,69128E-05
	0,86646069	0,12509827	0,10839273	0,89336080	0,00401279	0,102626409
X =	0,44048693	0,16474272	0,07256702	0,98086616	0,00339830	0,015735547
	•••	•••	•••	•••	•••	•••
	•••	•••	•••	•••	•••	•••
	0,00797900	0,38226145	0,00305006	0,94330478	0,05633752	0,000357699
	0,19606373	0,08551235	0,01676587	0,99328332	0,00580077	0,000915911
	0,00852624	0,04457254	0,00038004	0,77036285	0,18176436	0,04787279
TOTAL	70.15369736	5.76385394	4.54471396	41,33967582	0.69165881	0.96866537

Dilanjutkan dengan normalisasi pada matriks keputusan di atas, di mana hasil normalisasi berupa matriks ternormalisasi seperti diperlihatkan pada tabel 6.

Tabel 6. Normalisasi Data Kandidat Alternatif Pemeringkatan

Alternatif	C1	C2	C3	C4	C5	C6
A1	0,008684305	0,008763487	0,006771253	0,023858458	0,017531122	0,001624423
A2	0,004386638	0,200571031	0,078281108	0,023936613	0,001932984	0,009426611
A3	0,026938999	0,016082383	0,038546845	0,024030446	0,009487659	2,77834E-05
A4	0,012350891	0,021703927	0,023850286	0,021610252	0,005801697	0,105946194
A5	0,006278884	0,028582043	0,015967345	0,023726992	0,004913255	0,016244564
•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••
A41	0,000113736	0,066320461	0,000671123	0,022818388	0,081452768	0,000369269
A42	0,002794774	0,014835968	0,003689093	0,024027361	0,008386747	0,000945539
A43	0,000121537	0,007733114	8,36216E-05	0,018634951	0,262794829	0,049421391

Vol. 15, No. 2, Des 2022: 279 - 291

JURNAL ILMIAH KOMPUTER GRAFIS

3.6. Perbandingan Berpasangan (Pairwise Comparison)

Perbandingan berpasangan adalah suatu proses mengkonstruksikan suatu matriks untuk merepresentasikan tingkat kepentingan suatu kriteria terhadap kriteria yang lain. Tingkat kepentingan dan nilai bobot masing-masing kriteria ditentukan sebagai berikut:

- 1. Tes Per Jumlah Penduduk (TPJP) didefinisikan dengan tingkat kepentingan = "Penting" dan ditentukan sebagai nilai bobot subjektif 1
- 2. Positif Per Tes (PPT) didefinisikan dengan tingkat kepentingan = "Lebih Penting" dan ditentukan sebagai nilai bobot subjektif 3
- 3. Positif Per Jumlah Penduduk (PPJP) didefinisikan dengan tingkat kepentingan = "Lebih Penting" dan ditentukan sebagai nilai bobot 3
- 4. Aktif Per Positif (APP) didefinisikan dengan tingkat kepentingan = "Sangat Penting" dan ditentukan sebagai nilai bobot 5
- 5. Sembuh Per Positif (SPP) didefinisikan dengan tingkat kepentingan = "Paling Penting" dan ditentukan sebagai nilai bobot 7
- 6. Meninggal Per Positif (MPP) didefinisikan dengan tingkat kepentingan = "Paling Penting" dan ditentukan sebagai nilai bobot 7

Sehingga dihasilkan matriks perbandingan berpasangan seperti terlihat pada tabel 9.

	Tabel 7. Perbandingan Berpasangan								
	MPP	SPP	APP	PPT	PPJP	TPJP			
MPP	1	1	3	5	5	7			
SPP	1	1	3	5	5	7			
APP	0,333	0,333	1	3	3	5			
PPT	0,2	0,2	0,333	1	1	3			
PPJP	0,2	0,2	0,333	1	1	3			
TPJP	0,143	0,143	0,2	0,333	0,333	1			

3.7. Bobot Kriteria

Berdasarkan konstruksi matriks perbandingan berpasangan, maka dicari hasil perkalian setiap bobot pada setiap kriteria setiap baris. Berikutnya adalah proses perhitungan *eigen* maksimum, indeks konsistensi, dan konsistensi rasio. Nilai bobot yang dihasilkan dapat dikatakan valid jika konsistensi rasio di bawah nilai 0,1. Bobot valid pada masing-masing kriteria yang dihasilkan pada penelitian ini dapat dilihat pada tabel 8.

Tabel 8. Bobot

Kode Kriteria	Nama Kriteria	Bobot
C1	TPJP (Tes Per Jumlah Penduduk)	0,032860979
C2	PPT (Positif Per Tes)	0,069330649
C3	PPJP (Positif Per Jumlah Penduduk)	0,069330649
C4	SPP (Sembuh Per Positif)	0,336724838
C5	MPP (Meninggal Per Positif)	0,336724838
C6	APP (Aktif Per Positif)	0,155028045

3.8. Matriks Keputusan Berbobot Normal

Ketika bobot setiap kriteria terlah didapatkan, maka dapat dihitung matrik keputusan berbobot ternormalisasi. Untuk mendapatkan nilai-nilai pada matriks keputusan berbobot normal, maka dilakukan perkalian antara nilai pada kandidat alternatif pemeringkatan dengan bobot setiap kriteria. Hasil matriks keputusan berbobot ternormalisasi dapat dilihat pada matriks di bawah ini.

	Max	Min	Min	Max	Min	Min	
	3,99381E-06	0,000536142	5,79754E-06	0,006274851	0,088489546	0,007661702	
	9,1839E-05	0,001028587	0,000255767	0,008090609	0,002824026	0,000146585	
	3,73748E-06	0,004598041	4,65294E-05	0,007683518	0,02742717	5,72471E-05	
	•••	•••	•••	•••	•••	•••	
	•••	•••	•••	•••	•••	•••	
Dij =	0,00020633	0,001981612	0,001107026	0,007989468	0,001654415	0,002518363	
	0,000405862	0,001504747	0,001653556	0,007276708	0,001953575	0,016424631	
	0,000885242	0,001115002	0,002672478	0,008091648	0,00319473	4,30721E-06	
	0,000144149	0,013905720	0,00542728	0,008060052	0,000650884	0,001461389	
	0,000285375	0,000607578	0,000469455	0,008033735	0,005903164	0,000251831	
	1						_

3.9. Kriteria Menguntungkan (S+i) dan Kriteria Merugikan (S-i)

Dengan mendasarkan pada nilai pada matriks keputusan berbobot ternormalisasi, maka dapat dihitung nilai kriteria yang menguntungkan dan kriteria yang merugikan. Perhitungan kriteria mengacu pada kriteria yang berada pada setiap kolom matriks keputusan berbobot ternormalisasi. Kolom yang bertanda Max dikelompokkan sebagai kriteria yang menguntungkan (S+i), sedangkan kolom yang bertanda Min dikelompokkan sebagai kriteria yang merugikan (S-i). Kriteria yang termasuk dalam kelompok kriteria menguntungkan adalah C1dan C4, sedangkan kriteria yang termasuk dalam kelompok kriteria merugikan adalah C2, C3, C5 dan C6. Dari hasil perhitungan ini, masing-masing kandidat akan mendapatkan nilai S+i (menguntungkan) dan nilai S-i (merugikan), seperti terlihat pada tabel 9.

Tabel 9. Jen	is Kriteria	Setiap A	Alternatif

Alternatif	S+i	S-i
A1	0,00831911	0,007232029
A2	0,008204201	0,021445273
A3	0,00897689	0,006986517
A4	0,007682571	0,021536510
A5	0,008195798	0,007261416
•••	•••	•••
•••	•••	•••
A41	0,007687256	0,032128987
A42	0,008182448	0,004254966
A43	0,006278845	0,096693187
Total	0,369586	0,630414182

3.10. Rasio Relatif (Qi)

Dengan berdasarkan nilai dari hasil perhitungan nilai S+i dan S-i, maka besaran rasio relatif pada setiap alternatif dapat ditemukan. Besaran nilai rasio relatif pada masing-masing alternatif akan menjadi dasar dalam perhitungan pemeringkatan dengan mencari nilai rangking pada setiap alternatif, seperti terlihat pada tabel 10

Tabel 10. Rasio Relatif Setiap Alternatif

Alternatif	Kode Rasio Relatif	Nilai Rasio Relatif
A1	Q1	0,026126974
A2	Q2	0,01420958

Vol. 15, No. 2, Des 2022 : 279 – 291

A3	Q3	0,027410536
A4	Q4	0,013662509
A5	Q5	0,025931593
•••	•••	•••
•••	•••	•••
A41	Q41	0,011695692
A42	Q42	0,038449904
A43	Q43	0,007610759
	Total	1
	Max Qi	0,086609258

3.11. Nilai Utilitas

Besaran nilai utilitas didapat dari nilai rasio relatif setiap alternatif dibagi nilai nilai rasio relatif tertinggi kemudian dibagi dengan 100. Nilai utilitas pada masing-masing alternatif diperlihatkan pada tabel 11.

Tabel 11. Utilitas pada Setian Alternatif

Alternatif	Kode Utilitas	Nilai Utilitas (Ui)
A1	U1	30,16649149
A2	U2	16,40653709
A3	U3	31,64850536
A4	U4	15,77488234
A5	U5	29,940902
•••	•••	
•••	•••	•••
A41	U41	13,50397381
A42	U42	44,39468172
A43	U43	8,787465412

3.12. Pemeringkatan Penanganan Covid-19 di Negara Asia

Hasil akhir dari penelitian ini adalah pemeringkatan penanganan Covid-19 di negara-negara Asia. Hasil pemeringkatan disajikan dalam bentuk nilai prosentase pada setiap alternatif yang merujuk pada satu nama negara. Nilai utilitas paling tinggi sebesar 100% yang berarti nilai paling tinggi, menunjukkan tingkat penanganan Covid-19 yang paling baik. Representasi pemeringkatan ditampilkan diurutkan dari nilai utilitas tertinggi diikut nilai utilitas yang lebih kecil, seperti terlihat pada tabel 12.

Tabel 12. Peringkat Penanganan Covid-19 Negara di Asia

Peringakat	Kode Alternatif	Negara	Nilai Utilitas
1	A40	Bhutan	100,00%
2	A22	Uni Emirat Arab	44,62%
3	A42	Timor-Leste	44,39%
4	A32	Qatar	36,63%
5	A33	Uzbekistan	35,36%
6	A26	Kuwait	35,13%

		p 100111 101	0 0 11 1 0 10 0 11 1 202 1 0 20
7	A31	Oman	33,17%
8	A3	Turki	31,65%
9	A1	India	30,17%
10	A19	Hong Kong	30,01%
11	A5	Jepang	29,94%
12	A8	Malaysia	29,51%
13	A18	Kazakhstan	29,45%
14	A15	Yordania	29,36%
15	A13	Irak	28,66%
16	A24	Saudi Arabia	27,82%
17	A28	Bahrain	27,70%
18	A9	Thailand	27,64%
19	A29	Palestina	27,16%
20	A23	Azerbaijan	27,03%
21	A21	Nepal	26,87%
22	A10	Israel	24,89%
23	A11	Philippina	24,12%
24	A35	Kyrgyzstan	23,84%
25	A20	Lebanon	23,75%
26	A16	Pakistan	23,12%
27	A14	Bangladesh	23,02%
28	A38	Brunei	22,14%
29	A39	Kamboja	22,12%
30	A34	China	21,64%
31	A17	Singapura	21,33%
32	A6	Iran	20,78%
33	A7	Indonesia	20,10%
34	A30	Armenia	20,08%
35	A25	Sri Lanka	20,00%
36	A27	Myanmar	17,97%
37	A37	Maldives	17,80%
38	A2	Korea Selatan	16,41%
39	A4	Vietnam	15,77%
40	A41	Suriah	13,50%
41	A36	Afghanistan	13,16%
42	A43	Yaman	8,79%
43	A12	Taiwan	8,01%

4. Kesimpulan

Penggabungan dua metode AHP-COPRAS dimungkinkan untuk mencari nilai pemeringkatan penanganan Covid-19 di negara-negara Asia. Proses pemberian nilai bobot dan validasi bobot pada setiap kriteria menggunakan AHP, khususnya pada bagian perbandingan berpasangan, sedangkan untuk

Vol. 15, No. 2, Des 2022 : 279 – 291

pemeringkatan menggunakan metode COPRAS.

Proses pemeringkatan menggunakan enam kriteria penilaian yaitu: 1) Tes Per Jumlah Penduduk dengan bobot 0,032860979; 2) Positif Per Tes dengan bobot 0,069330649; 3) Positif Per Jumlah Penduduk dengan bobot 0,069330649; 4) Sembuh Per Positif dengan bobot 0,336724838; 5) Meninggal Per Positif dengan bobot 0,336724838; 6) Aktif Per Positif dengan bobot 0,155028045.

Pada hasil akhir pemeringkatan menunjukkan bahwa negara dengan kasus meninggal yang tinggi dan kasus kesembuhan yang rendah akan menjadikan peringkat negera tersebut jatuh dalam prosentase utilitas yang rendah, hal ini disebabkan kriteria kasus meninggal dan kasus kesembuhan mempunyai bobot yang paling tinggi dalam perannya membentuk nilai utilitas. Sebaliknya negara dengan kasus meninggal yang rendah dan kasus kesembuhan yang tinggi akan menyebabkan peringkat yang tinggi dalam daftar pemeringkatan.

Daftar Pustaka

- [1] A. Amanaturohim dan S. Wibisono, "Penentuan Parameter Terbobot Menggunakan Pairwise Comparison Untuk CBR Deteksi Dini," *J. Sains Komput. Inform.*, vol. 5, hal. 280–294, 2021.
- [2] G. Ginting, S. Alvita, Mesran, A. Karim, M. Syahrizal, dan N. K. Daulay, "Penerapan Complex Proportional Assessment (COPRAS) Dalam Penentuan Kepolisian Sektor Terbaik," *J. Sains Komput. Inform.*, vol. 4, no. 2, hal. 616–631, 2020, [Daring]. Tersedia pada: https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/254/236.
- [3] M. F. Ridhwan, I. L. Sardi, dan S. Y. Puspitasari, "Rekomendasi Pemilihan Tempat Usaha Makanan dengan Metode COPRAS di Kecamatan Jambangan," *e-Proceeding Eng.*, vol. 6, no. 2, hal. 9491–9503, 2019.
- [4] T. L. Saaty, "Decision making with the Analytic Hierarchy Process," *Int. J. Serv. Sci.*, vol. 1, no. 1, hal. 83–98, 2008, doi: 10.1504/ijssci.2008.017590.
- [5] R. W. Saaty, "The analytic hierarchy process-what it is and how it is used," *Math. Model.*, vol. 9, no. 3–5, hal. 161–176, 1987, doi: 10.1016/0270-0255(87)90473-8.
- [6] M. Imrona, A. A. Budiutama, E. Darwiyanto, dan D. Handayani, "Penerapan Metode AHP dan COPRAS-G untuk Menentukan Prioritas Perbaikan Drainase Pada Jalan Nasional Di Kota Bandung," *Ind. J. Comput.*, vol. 4, no. March, hal. 65–74, 2019, doi: 10.21108/indojc.2019.4.1.261.
- [7] S. Wibisono, W. Hadikurniawati, H. Februariyanti, dan M. S. Utomo, "An improvement of similarity in case based reasoning using subjective-generalized weight for traditional Indonesian cuisine," *J. Theor. Appl. Inf. Technol.*, vol. 98, no. 5, hal. 864–875, 2020.