Systematic Literature Review terhadap Klasifikasi Emosi pada Lirik Lagu Berbahasa Ambon menggunakan Metode Bidirectional LSTM dengan Glove Word Representation Weighting
DOI:
https://doi.org/10.51903/pixel.v16i2.1641Keywords:
Emotion; Song Lyrics, Glove Word Representation Weighting, LSTMAbstract
One form of text that can express emotions is lyrics. Lyrics are a type of literary work expressed in the form of words, the contents of which can express the songwriter's personal feelings, thoughts, and emotions. Therefore, the lyrics can be used as an object of research on the classification of emotions. The classification of song lyrics really requires bi-LSTM to be the input value when classifying data in the form of song lyrics in order to get high accuracy results. This research was carried out systematically and the results were measurable. Descriptive qualitative research was used in this research. The results of identification based on case studies and statistics show that the reviews of popular topics are identical. The classification of song lyrics really requires bi-LSTM to be the input value when classifying data in the form of song lyrics in order to get high accuracy results.
References
[2] A. Nurdin, B. Anggo Seno Aji, A. Bustamin, and Z. Abidin, “Perbandingan Kinerja Word Embedding Word2Vec, Glove, Dan Fasttext Pada Klasifikasi Teks,” J. Tekno Kompak, vol. 14, no. 2, p. 74, 2020, doi: 10.33365/jtk.v14i2.732.
[3] G. S. Ramadhan, B. Irawan, C. Setianingsih, and U. Telkom, “Klasifikasi emosi pada lirik lagu menngunakan algoritma naïve bayes dan particle swarm optimization classification of emotions on song lyrics using naïve bayes algorithm and particle swarm optimization,” vol. 8, no. 5, pp. 6293–6306, 2021.
[4] N. A. Zuhroh and N. A. Rakhmawati, “Clickbait detection: A literature review of the methods used,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 6, no. 1, pp. 1–10, 2020, doi: 10.26594/register.v6i1.1561.
[5] J. Bahasa, P. Issn, K. Emosi, L. Lagu, F. Album, and F. Ego, “Kata Kunci: emosi , fungsi ego , fungsi otak PENDAHULUAN,” vol. 4, no. 2, pp. 239–251, 2019.
[6] D. J. M. Pasaribu, K. Kusrini, and S. Sudarmawan, “Peningkatan Akurasi Klasifikasi Sentimen Ulasan Makanan Amazon dengan Bidirectional LSTM dan Bert Embedding,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 1, 2020, doi: 10.35585/inspir.v10i1.2568.
[7] A. Zahra, “Pemodelan Named Entity Recognition Pada Artikel Wisata Dengan Metode Bidirectional Long Short-Term Memory Dan Conditional Random Fields,” 2021.
[8] S. Wu, Y. Liu, Z. Zou, and T. H. Weng, “S_I_LSTM: stock price prediction based on multiple data sources and sentiment analysis,” Conn. Sci., 2021, doi: 10.1080/09540091.2021.1940101.
[9] J. Abdillah, I. Asror, Y. Firdaus, and A. Wibowo, “Emotion Classification of Song Lyrics using Bidirectional LSTM Method,” no. 10, pp. 7–8, 2021.
[10] L. W. Astuti, A. Rachmat C., and Y. Lukito, “Implementasi Algoritma Naïve Bayes Menggunakan Isear Untuk Klasifikasi Emosi Lirik Lagu Berbahasa Inggris,” J. Inform., vol. 14, no. 1, pp. 16–21, 2017, doi: 10.9744/informatika.14.1.16-21.
[11] Y. An, S. Sun, and S. Wang, “Naive Bayes classifiers for music emotion classification based on lyrics,” Proc. - 16th IEEE/ACIS Int. Conf. Comput. Inf. Sci. ICIS 2017, no. 1, pp. 635–638, 2017, doi: 10.1109/ICIS.2017.7960070.
[12] A. Hijra Ferdinan, A. Brian Osmond, and C. Setianingsih, “Emotion Classification in Song Lyrics Using K-Nearest Neighbor Method,” Proc. - 2018 Int. Conf. Control. Electron. Renew. Energy Commun. ICCEREC 2018, pp. 63–69, 2018, doi: 10.1109/ICCEREC.2018.8712092.
[13] H. Piliang and R. Kusumaningrum, “Music Emotion Classification Based on Indonesian Song Lyrics Using Recurrent Neural Network,” ICICOS 2019 - 3rd Int. Conf. Informatics Comput. Sci. Accel. Informatics Comput. Res. Smarter Soc. Era Ind. 4.0, Proc., pp. 3–6, 2019, doi: 10.1109/ICICoS48119.2019.8982532.
[14] L. Sofiyana, Z. Abidin, and H. Nurhayati, “Klasifikasi Emosi Untuk Teks Berbahasa Indonesia Dengan Menggunakan K-Nearest Neighbor,” vol. 1, no. January. pp. 194–299, 2012.
[15] M. El-Dairi and R. J. House, “Optic nerve hypoplasia,” Handbook of Pediatric Retinal OCT and the Eye-Brain Connection. pp. 285–287, 2019. doi: 10.1016/B978-0-323-60984-5.00062-7.
[16] C. X. Chen, B. Barrett, and K. L. Kwekkeboom, “Efficacy of Oral Ginger (Zingiber officinale) for Dysmenorrhea: A Systematic Review and Meta-Analysis,” Evidence-based Complement. Altern. Med., vol. 2016, 2016, doi: 10.1155/2016/6295737.
[17] Y. A. Singgalen, “Pemilihan Metode dan Algoritma dalam Analisis Sentimen di Media Sosial : Sistematic Literature Review,” J. Inf. Syst. Informatics, vol. 3, no. 2, pp. 278–302, 2021, doi: 10.33557/journalisi.v3i2.125.
[18] D. Anggraini and D. R. M.PD, “Analisis Proses Morfologi Afiksasi Pada Lirik Lagu Original Soundtrack Animasi Detektive Conan,” J. Ilm. Mhs. Jur. Bhs. dan Sastra Jepang, vol. 4, no. 2, pp. 1–11, 2020.
[19] M. Azhar, N. Hafidz, B. Rudianto, and W. Gata, “Jatiwaringin No 2 Cipinang Melayu Makasar Jakarta Timur, (021)8005722; 2 Informatics Engineering Department; STMIK Nusa Mandiri,” Cipinang Melayu Makasar Jakarta Timur, vol. 8, no. 2, p. 8005722, 2020.
[20] M. Ruocco, “Domain general Active Learning strategies using inter-sample similarity and Reinforcement Learning Bjørn Hoxmark Jørgen Wilhelmsen,” no. August, 2018.
[21] A. F. Bahary, Y. Sibaroni, and M. S. Mubarok, “Sentiment analysis of student responses related to information system services using Multinomial Naïve Bayes (Case study: Telkom University),” J. Phys. Conf. Ser., vol. 1192, no. 1, pp. 0–9, 2019, doi: 10.1088/1742-6596/1192/1/012046.
[22] F. F. Irfani, M. A. Fauzi, and Y. A. Sari, “Klasifikasi Berita pada Twitter Menggunakan Metode Naive Bayes dan Query Expansion Hipernim-Hiponim,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 12, pp. 6093–6099, 2018.
[23] F. Rahutomo, Pangestu Nur Mirzha, and I. F. Rozi, “Evaluasi Implementasi Algoritma Improved K-Nearest Neighbor Pada Kategorisasi Lirik Lagu Bahasa Indonesia Menurut Usia,” J. Inform. Polinema, vol. 6, no. 2, pp. 19–26, 2020, doi: 10.33795/jip.v6i2.290.
[24] P. H. Saputro, M. Aristian, and D. ListianingTyas, “Klasifikasilagu Daerah Indonesia Berdasarkanlirikmenggunakanmetode Tf-Idf Dan Naïve Bayes,” J. Teknol. Inf. dan Terap., vol. 4, no. 1, pp. 47–52, 2019, doi: 10.25047/jtit.v4i1.20.
[25] F. S. Sinaga, Indriati, and B. Rahayudi, “Klasifikasi Emosi Lirik Lagu menggunakan Improved K-Nearest Neighbor dengan Seleksi Fitur dan BM25,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, pp. 5697–5702, 2019.
[26] A. P. Wibawa, M. G. A. Purnama, M. F. Akbar, and F. A. Dwiyanto, “Metode-metode Klasifikasi,” Pros. Semin. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, pp. 134–138, 2018.
[27] R. W. Pratiwi, Y. Sari, and Y. Suyanto, “Attention-Based BiLSTM for Negation Handling in Sentimen Analysis,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 14, no. 4, p. 397, 2020, doi: 10.22146/ijccs.60733.
[28] C. Chen and Q. Li, “A Multimodal Music Emotion Classification Method Based on Multifeature Combined Network Classifier,” vol. 2020, 2020.
[29] B. Iung, “Cœur et grossesse,” EMC - Trait. médecine AKOS, vol. 8, no. 2, pp. 1–4, 2013, doi: 10.1016/s1634-6939(13)59289-1.
[30] P. Anki and A. Bustamam, “Measuring the accuracy of LSTM and BiLSTM models in the application of artificial intelligence by applying chatbot programme,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 1, pp. 197–205, 2021, doi: 10.11591/ijeecs.v23.i1.pp197-205.